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Abstract

In this project, we attempt a number of different tech-
niques for building a robust classifier for the Tiny ImageNet
challenge. We focus on the latest models using Vision Trans-
formers, which have been shown to help improve robustness
against out of distribution examples from both white box
and black box attackers. We report a top 1 validation ac-
curacy of 81% on our architecture from fine tuning on Tiny
ImageNet, using vision transformer blocks that were pre-
trained with ImageNet 1k, and using standard data augmen-
tations along with AugMix. Our architecture shows perfor-
mance improvements over a standard ViT model via par-
allel vision transformers attending to different image patch
sizes combined with cross attention and an MLP head. We
also observe faster training and higher clean accuracy com-
pared with deeper stacked ViT architectures with similar
numbers of parameters. We benchmark robustness and ac-
curacy of our model against a variety of ViT and ResNet
based models on Tiny Imagenet-C and with adversarial at-
tacks from Foolbox, and evaluate the addition of cross at-
tention and varying patch sizes, as well as the use of sparse
attention, to classifying out of distribution images.

1. Introduction
Correctly classifying out of distribution images with

deep neural networks has been a problem of interest in
Computer Vision, as it has been noted that current models
tend to overfit to their training distributions [5, 11]. This has
been especially studied for Convolutional Neural Networks,
which have formed the backbone of solutions to the Ima-
geNet challenge [13], with well known architectures like
ResNet and InceptionNet [4, 15], and more recent variants
of these being among the most common in use today.

The Vision Transformer, introduced by Dosovitkiy et.
al, is a model that uses stacked transformer encoder blocks
for ImageNet classification. It has been suggested that use
of such transformers can help improve robustness of mod-
els on vision tasks, especially given prior research into self
attention for improving robustness for NLP tasks [7, 10].

Recent work has suggested that the higher level features
learned by Vision Transformers compared to CNNs are
more generalizable [14], and that Vision Transformers are
more robust to black box adversarial attacks [12]. In addi-
tion, many variants of the original Vision Transformer have
shown clean accuracy surpassing that of most current CNN
models, with EfficientNet variants being the only remaining
CNN models that still outperform Vision Transformers that
have been pretrained with large external datasets [16].

Motivated by this recent work, in this project, we at-
tempt to benchmark Tiny ImageNet performance with Vi-
sion Transformers using the original Vision Transformer
(ViT) and Pooling Vision Transformers (PiT). We find that
PiT from Heo et. al performs the best in terms of clean
accuracy, with an 85% validation accuracy, but has in-
creased sensitivity to adversarial perturbations. In addi-
tion to benchmarking performance of existing models with
small tweaks, we propose an improvement on the base Vi-
sion Transformer architecture by using parallel vision trans-
formers with cross attention layers that is inspired by the
CrossViT architecture from Chen et. al, but adapted to take
promote faster training, and to take advantage of pretrained
weights from the base Vision Transformer that are avail-
able via the Pytorch Image Models Github repository [18].
We find that our architecture is able to increase validation
accuracy on top of a base ViT model of a larger size, but
that this comes at the cost of robustness, where the original
ViT models were found to perform the best. Additionally,
we experimented with applying sparse attention and batch
norm adaptation to various existing models for evaluating
their impact on robustness and show these results below.

2. Literature Survey and Related Work

2.1. Vision Transformers (ViT)

Transformers [17] are mainstream in NLP for many
tasks, where they achieve state of the art results in tasks
like text generation and question answering [1]. The orig-
inal transformer architecture from Vaswani et al. consists
of an encoder block that feeds into a multi head attention
block in a separate decoder block. Vision transformers, as
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Figure 1. Left: Original vision transformer architecture with detailed Transformer Encoder Block. Right: Our architecture based off of
CrossViT adapted to using pretrained encoder block modules with 2 cross attention layers and a concat before passing into an MLP head.

introduced by Dosovitkiy et al, consist solely of stacks of
12-24 transformer encoder blocks, with images that are first
split into fixed-size patches (usually 16x16 or 32x32) then
flattened, passed through a linear projection layer, and then
passed through a positional embedding layer. Finally, the
resulting sequence is fed through the transformer encoder
blocks, with the final output then going through an MLP
with the number of classes as the final output. This model
achieved state of the art results on ImageNet and showed
that fully attention based architectures could be used for vi-
sion tasks.

2.2. ViT Variants (PiT and CrossViT)

The Pooling-based Vision Transformer (PiT), proposed
by Heo et al. builds on the work of ViT and uses addi-
tional pooling operations to improve baseline model per-
formance and reduce reliance on large pretraining sets like
JFT-300M. In addition, PiT outperforms ViT on several
robustness benchmarks, including resistance to FGSM at-
tacks, ImageNet-A performance, and occlusion benchmarks

[9]. The Cross-attention Vision Transformer (CrossViT),
proposed by Chen et al. combines image patches of dif-
ferent sizes in a transformer to produce stronger image fea-
tures. The CrossViT uses transformer encoders made up
of a large primary branch with coarse-grained patch sizes
and a small complementary branch that uses fine-grained
patch sizes. The branches consist of stacked transformer en-
coder blocks which attend to the other branch periodically
via cross attention blocks. CrossViT also showed improve-
ments over the ViT baseline.

2.3. Tiny ImageNet-C

ImageNet-C and Tiny ImageNet-C are datasets gener-
ated by applying 15 algorithmically generated corruptions
to the ImageNet and Tiny ImageNet datasets [6]. Since this
project is focused on developing a robust model against
unknown test-time perturbations, the Tiny ImageNet-C
dataset provides a very useful benchmark for our model.
For this project, we randomly chose 5 of the corruptions to
test our model with: elastic transform, motion blur, snow,
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noise impulse, and JPEG compression.

3. Methods and Approach
3.1. Data Augmentations and Preprocessing

While training our models, we experimented with vari-
ous data augmentation techniques. First, we used random
cropping, random horizontal/vertical flipping, random rota-
tion, color jittering, and Cutout [3]. After experimenting
with various combinations of these transformations, we dis-
covered that models trained with AugMix [8] consistently
outperformed any of the other combinations of transforma-
tions we tried, and so we used it for the final robustness
evaluations of all of our models, in addition to keeping hor-
izontal flips and random cropping. The implementation of
AugMix we used from the Pytorch Image Models reposi-
tory also uses contrast, color, brightness, and sharpness in
addition to the AugMix transforms from the original paper.
Lastly, we resize all our images to 224 by 224 before feed-
ing it into our model to fit the trained input sizes for the
models we selected.

3.2. Cross Attention and Parallel Transformer
Blocks

Our main architectural change that we present is using
cross attention across otherwise parallel vision transformers
in order to improve classification performance. The nov-
elty of our model architecture is in it’s use of pretrained
ViT encoder blocks, combined with the idea of using cross
attention across encoder blocks processing different sized
patches in order to capture a larger variety of spatial depen-
dencies in the image than a convolutional model or a single
ViT model would. It draws inspiration from similar work
done for CrossViT [2], but is distinct in that it uses cross at-
tention only towards the end of the sequence of transformer
encoder blocks in order to help the models learn features
separately, and to separate the gradient flow for faster train-
ing.

3.3. Sparse Attention and Batch Norm Adaptation

One idea that we experimented with before leaving it be-
hind due to drops in accuracy, was applying Sparse Atten-
tion from Zhao et al [19] to pretrained models in order for
the model to be able to focus on extracting information from
other more spatially relevant tokens by explicitly masking
out attention values. We report exact numerical results be-
low. Overall, we found that for the values Zhao et al. re-
ported (k = 8, 16, 32), our accuracy decreased with no gain
in robustness to adversarial attacks. We did find that models
trained with Sparse Attention performed much better when
inference was also run with Sparse Attention, and that al-
lowing for the full attention mechanism at test time gen-

erally decreased both clean and robust accuracy, which we
believe is due to the learned weights assuming that the at-
tention is sparse, and only attends to the image patches with
relatively stronger signal.

An additional idea we considered was using Batch Norm
Adaptation, a technique used to try and update the batch
norm layers to use test time statistics rather than training
time statistics to try and account for test time distribution
shift. Although this generally improved results, we avoided
using it in our final implementation due to the suggestion of
a TA to stick with strictly running inference and not adapt-
ing at test time.

3.4. Training and Transfer Learning

A key component of our method is that we use trans-
former blocks with pre-trained weights on ImageNet. We
freeze all but the last 90 layers of the transformer and then
attach a classification head composed of Linear, ReLU, and
Dropout layers. Finally, we use AugMix on the TinyIma-
geNet data and fine-tine the model.

For our training, we use the Adam optimizer with two
different initial learning rates: 1e-4 for the pre-trained trans-
former and 1e-3 for the classification head. We also in-
cluded a cosine annealing scheduler to adjust the learning
rates during training. Lastly, we used a batch size of 32 and
trained for 10 epochs on most models. A challenge that we
encountered while trying to make architectural changes was
in making sure that pretrained weights were not perturbed
which led us to make the above architectural decisions.

4. Results
4.1. Comparison to Larger ViT

Empirically, our parallel architecture with a similar num-
ber of model parameters to a larger vision transformer was
able to outperform the deeper stacked serial model, and
greatly improved speed of training, with each epoch taking
roughly 50 minutes on a Tesla V100 GPU to train for the
ViT L patch16 224 in21k model, consisting of 24 trans-
former encoder layers, vs each epoch taking roughly 20
minutes on the same GPU for the parallel model consisting
of the smaller ViT B patch16 224 and ViT B patch32 224
models, each with 12 transformer encoder layers, with out-
puts simply concatenated and passed to an MLP for output.
Additionally, we observed an error rate of 18.9% for our
model, which topped the performance of the single larger
vision transformer, with an observed error rate of 20.1%.

4.2. Error Analysis

To evaluate our model’s performance, we look at the top
1 accuracy on plain Tiny ImageNet as well as the average
accuracy on each of the corrupted datasets. The table below
gives a summary of each model’s performance.
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Robustness
Model Baseline Impulse Noise Snow Motion Blur Elastic Transform Jpeg Average % Change
ViT 79.2 68.0 68.0 70.63 67.2 70.5 68.9 -13.0
PiT 85.3 67.6 73.0 72.6 70.6 73.1 71.4 -16.3
DoubleViT 81.1 67.7 67.6 70.5 67.6 71.1 68.9 -15.0
DoubleViT+Cross 81.2 67.1 68.7 71.2 67.8 72.1 69.4 -14.6
DoubleViT+2Cross 80.7 65.9 68.4 71.2 68.2 71.9 69.1 -14.4

Table 1. Model accuracies across different Tiny ImageNet-C perturbations for Vision Transformer models. Each model was evaluated on
the base TinyImageNet, as well as each of the corrupted datasets.

Clean Accuracy
Model Top 1 Val Accuracy Top 3 Val Accuracy
PiT 85.5 93.9
PiT+Aug 85.3 93.7
PiT+Aug+Sparse 79.7 90.3
ViT 78.4 88.1
ViT+Aug 79.1 88.8
ViT+Aug+Sparse 75 86.9
InceptionResnetV2 67.3 80.5
InceptionResnetV2+Aug 67.9 80.3
DoubleViT 81.1 90.8
DoubleViT-Cross 81.2 91.6
DoubleViT-2Cross 80.7 91.9

Table 2. Top 1 and 3 validation accuracies. DoubleViT is our model.

We see that PiT achieved the highest top 1 accuracy on
TinyImageNet. DoubleViT is next best, achieving 81.1%,
81.2%, and 80.7% accuracy on DoubleViT with 0, 1 and
2 cross attention layers, respectively. Finally, the base ViT
performed the worst out of the models tested on standard
Tiny ImageNet. We observe that the addition of pooling
layers contributes strongly to the overall performance of the
model on Tiny ImageNet, and that the addition of cross at-
tention layers to our own model architecture seems to corre-
late to an increase in top 3 validation accuracy. We hypoth-
esize that the reason that the 2 cross attention layer Double-
ViT model has a lower top 1 validation accuracy is due to
the larger number of weights that needed to be updated with
the addition of more layers, which is a problem with purely
using pretrained weights to build our model. This is a con-
straint in terms of compute that cannot be overcome without
additional funding, and so we leave the task of training our
model from scratch with external data to future work.

4.3. Ablations and Robustness Benchmarking

For robustness analysis, we measure robustness by the %
change between the top 1 accuracy on Tiny ImageNet and
the average top 1 accuracy on the corrupted data.

As we can see, although PiT achieved the highest top-1
accuracy on TinyImageNet, it was the least robust against
our corruptions. We hypothesize that this is due to the
fact that the pooling layers create dependencies between
encoder layers that may not otherwise exist. We observe
that the vanilla ViT recorded the lowest accuracy on vanilla

TinyImageNet but was the most robust in our experiment.

Our model offers a compromise between the two – we
offer a TinyImageNet accuracy higher than ViT combined
with better robustness than PiT. Furthermore, we see that as
the number of cross attention layers increases from 0 to 2,
the robustness also increases. Thus we tentatively conclude
that the addition of cross attention layers can improve the
robustness in vision transformer based models.

5. Conclusion/Lesson Learned

Our vision transformer model with parallel ViT blocks
attending to different patch sizes combined with cross at-
tention demonstrated Top-1 accuracy of 81% on Tiny Im-
ageNet after being trained for just 2 epochs with AugMix.
We found that there is a potential benefit in using additional
cross attention for parallel vision transformer models, both
for clean accuracy, as well as robustness, and show a way
in which models like CrossViT can easily be recreated from
pretrained transformer encoder blocks for faster training in
transfer learning settings like this one.

6. Team Contributions

Eric worked on modeling and evaluation, Calvin on ro-
bustness evaluation, and Karthik on drafting the report.
60:30:10%
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