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Extended Abstract

In our work, we experiment with the use of an instance-based augmentation method in
a meta-learning setting. Past experiments in traditional supervised settings have shown
that learning an input-specific augmentation can outperform global augmentations that
are sampled independently from the input data. Furthermore, data augmentation has
been shown to improve performance in meta-learning settings. To our knowledge, how-
ever, limited work has been performed on instance-based augmentation in meta-learning
settings. To this end, we benchmark the performance of learning instance-based crop-
ping augmentations on the few shot datasets CIFAR-FS and mini-ImageNet, which are
designed for K-shot learning. Training in a fully end-to-end manner, we apply InstaAug
on a meta-learning framework using ProtoNet with a ResNet-12 backbone on 5-way
1-shot, 5-shot, and 10-shot for CIFAR-FS and 5-way 1-shot on mini-ImageNet (due
to limited resources). Our results show that a learned invariance module during meta
training is able to outperform a random baseline. Furthermore, our results support past
work on standard global augmentations that suggest query augmentation is the most ef-
fective and that support and shot augmentation can harm performance. However, unlike
past work in traditional supervised settings, we find that instance-based augmentation
in meta-learning settings performs worse (2-3% absolute) than CutMix. Taking a closer
look at the results, we notice that the generalization gap between training and validation
accuracy is similar and large across no augmentation, random cropping, and instance
cropping but minimal for CutMix. As meta-learning suffers greatly from overfitting,
we conclude that stronger regularization is needed for meta-learning when compared
to traditional supervised learning settings. Finally, we analyze applying instance-based
augmentations at meta-test time, and find that unlike in the supervised setting, applying
instance-based data augmentations to generate additional image views at test time does
not improve classifier accuracy. We suggest that this is a result of the instance-based
augmentation module being fit to the training task distribution rather than the test task
distribution.



2 Eric Tang and Pranay Agrawal

1 Introduction

Data augmentation for image classification has become vital as it offers a simple way to
boost performance. By augmenting the data, one can increase the dataset while reduc-
ing overfitting during training. Existing efforts involve global augmentation where an
augmentation such as cropping or rotation is sampled independently with no reliance on
the input data. However, global augmentation has limitations in that it may over-exploit
or under-exploit the transformation of an image, accidentally transforming the image to
a different label or limiting the diversity of a label, respectively. In Figure 1 from Miao
et. al, rotating the number “6” transforms it into a “9”, or color jittering from yellow to
green transforms a lemon into a pro.

Fig. 1. The augmentation of some images can increase the diversity and size of the dataset, but the
same augmentation on a different image can transform the label to a different label. For example,
0 is rotation invariant whereas 6 is not.

More recent work has been performed on learning input-specific augmentation. Un-
like a global augmentation, by training a learned invariance module, we can sample a
distribution dependent on the input for our augmentations. InstaAug, which we use as
a framework for our results, learns input-dependent transformations that can be trained
end-to-end with a downstream model. By learning a better distribution over augmen-
tations it is possible to improve the distribution of training data and improve overall
performance.

Furthermore, data augmentation in meta-learning settings has also received increas-
ing attention to boost few-shot performance, motivated by the insight that meta-learners
are particularly vulnerable to overfitting, due to both potential overfitting at the task
level (overfitting to the support set), as well as potentially overfitting to the distribu-
tion of training tasks (Rajendran et al. (2020)). Prior work on helping this overfitting
phenomenon has included work on augmenting tasks by applying random modifica-
tions to images (Liu et al. (2020); Santoro et al. (2016)) and mixing labels (Rajen-
dran et al. (2020)). However, to our knowledge, there is limited work performed with
learning input-dependent augmentations for meta-learning. As capturing these local
invariances has shown to improve performance in traditional supervised settings, our
goal is to experiment if instance-specific data augmentation is viable for meta-learning.
Using CIFAR-FS and mini-ImageNet, two datasets for benchmarking few-shot meta-
learning performance, we attempt to learn instance-based data augmentations for the
meta-learning setting.
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2 Related Work

2.1 Learning to Augment

There exists a body of work focusing on learning augmentations from training data for
a fixed supervised learning task. Benton et al. (2020) proposes learning a distribution
over augmentations for a specific task via parameterization of a set of augmentations
and end-to-end training. Miao et al. (2022) further proposes parameterizing the distri-
bution of augmentations based on the input image and training end to end. Other works
like Zhou et al. (2020) and Cheung & Yeung (2022) suggest learning the augmentation
module on a separate validation set before applying it to a training set for learning. How-
ever, to our knowledge, there are no prior works suggesting learning instance-specific
augmentations in a meta-learning setting.

2.2 Data Augmentation for meta-learning

Previous work from Ni et al. (2020) on applying data augmentation for meta-learning
has shown improvements in generalization from applying methods such as MixUp and
CutMix. There also exists work that discusses the topic of meta-augmentation, in which
additional tasks are created from the sampled training task distribution by either modi-
fying images, as in Santoro et al. (2016) and Liu et al. (2020), or by modifying labels,
as in Rajendran et al. (2020). In our work, we intend to focus on exploring the case
of modifying the input images via instance-specific augmentations for task, query, and
shot augmentation in a setting most similar to Ni et al. (2020), but with learned rather
than randomly sampled augmentations.

3 Instance Specific Data Augmentation for meta-learning

In this section, we describe how we adapt Instance Specific Data Augmentation (Miao
et al. (2022)) for the meta-learning setting.

3.1 meta-learning Problem Setup

We follow the standard N-way K-shot meta-learning problem setup, where given a
dataset D we sample a task Ti = {Ds

i , D
q
i } by first sampling N classes, then sampling

K examples from each task in order to form a support set Ds
i , and finally sampling

some number of additional examples from each of the N classes to form a query set
Dq

i .
For modeling, we use the ProtoNet (Snell et al. (2017)), where the aim is to learn a

set of model parameters θ used to compute a feature vector fθ(x) for a given input x.
The prototype of each of the N classes in the support set is defined as the mean of the
K feature vectors belonging to the class. Classification on examples from the query set
is then carried out by computing the nearest prototype to query set feature vectors. We
aim to minimize the negative log-likelihood of the query data, which can be calculated
using the cross-entropy loss.
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Fig. 2. Meta training support, shot, and query augmentation. Support and query augmentation
replace the original image with the augmented image for the respective set, whereas shot aug-
mentation appends the augmented image to the support set.

3.2 Data Augmentation for meta-learning Setup

Ni et al. (2020) suggests 4 categories of augmentation that can be applied to the meta-
learning pipeline - support, query, task, and shot augmentation. As shown in Figure 2,
support augmentation replaces the support training images with the transformed image,
shot augmentation appends augmented support training images to the original set of
support training images, and query augmentation transforms the query training images.
We omit task augmentation (in which the applied label-preserving data augmentation is
used to generate additional tasks to sample from during meta-training), in our experi-
ments, and leave it as a direction for future exploration.

3.3 Instance Specific Data Augmentation for meta-learning Setup

We learn an instance-specific data augmentation as described in Miao et al. (2022),
which involves training an augmentation module together with a meta-learning model in
an end-to-end fashion in order to minimize the expected loss while enforcing the diver-
sity of the augmented images. The invariance model ϕ, which is a trainable neural net-
work, sits between inputs x from the meta-training set, and the meta-learning classifier
f . At meta-training time, given an input, we sample a transformation τ ∼ p(τ ;ϕ(x)) to
generate an augmented sample from either the support or the query set. We then follow
Miao et al. (2022) in solving the constrained optimization problem

minf,ϕEx,y∼pdata
[Eτ∼p(τ ;ϕ(x)[L(f(τ(x), y)]]

s.t. Ex,y∼pdata
[H[p(τ ;ϕ(x)]] ∈ [Hmin, Hmax]

This is possible by parameterizing p appropriately, solving for entropy in closed form,
and using the following Lagrangian function, where the value of λ is tuned based on
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Fig. 3. Instance-specific data augmentation for the meta-learning pipeline. Trains the invariance
module and then samples this distribution to generate τ(x) using a ProtoNet with a ResNet-12
backbone.

the current entropy (increasing λ if average entropy over a batch is lower than Hmin,
and decreasing λ if average entropy is higher than Hmax).

Ex,y∼pdata
[Eτ∼p(τ ;ϕ(x)[L(f(τ(x), y)]]− λEx,y∼pdata

[H[p(τ ;ϕ(x)]] (1)

We note that since we are in a meta-learning setting where the model parameters are
backpropagated through the meta-training query examples, the x in the above expres-
sions corresponds to the sampled query data x ∼ Dq

i . Thus, in order to perform gradient
descent on the learned invariance module, augmentation must always be performed on
the query data, since ProtoNet only computes gradient updates on the query set. This
means that shot and support augmentation are unable to be considered separately from
query augmentation with our proposed setup. However, considering that Ni et al. (2020)
find that support and shot augmentation may degrade performance, and find that query
augmentations tend to improve accuracy, this is unlikely to have impacted our findings.

3.4 Test Time Instance Specific Augmentations

Test time data augmentation, in which multiple data augmentations are performed on
test images, and predictions are averaged across the sampled augmentations, has shown
to improve performance for traditional supervised learning, being used in the AlexNet
and ResNet papers (Krizhevsky et al. (2012); He et al. (2015)). We investigate using
our learned invariance model to generate additional views of meta-test query set images
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x ∼ Dq
i by sampling n different transformations τi from p(τ ;ϕ(x)), and averaging over

the outputs to produce a more robust classifier.

4 Experiments and Results

We primarily experiment on learning instance-based cropping on the CIFAR-FS dataset
(Bertinetto et al. (2018)). For our meta-learning model, we use a ProtoNet with a
ResNet-12 backbone. We also run additional experiments on Mini-ImageNet (Vinyals
et al. (2016)).

4.1 Datasets

The CIFAR-FS dataset consists of 32x32 images from 100 classes with 600 examples in
each class, sampled from the CIFAR-100 dataset. Similarly, the Mini-ImageNet dataset
consists of 84x84 images from 100 classes with 600 examples in each class, sampled
from the ImageNet dataset. Both datasets split their 100 classes into 64 classes for
training, 16 classes for validation, and 20 classes for testing.

4.2 Experiment Details

All models are trained for 40 epochs, with 8000 episodes per epoch, and batches of 8
tasks. We also fix the number of classes per task, N , as 5. Both the learned invariance
module and the ProtoNet backbone are trained with standard SGD optimizers, with
the invariance module using a fixed learning rate of 1e − 5, and the meta-learning
backbone using an initial learning rate of 0.1, with nesterov momentum and weight
decay. Validation set accuracies are calculated over 2000 episodes, and with 15 query
examples per class.

Method Mode 1-Shot 5-Shot 10-Shot
No Aug - 58.84 ± 0.56 74.47 ± 0.42 78.37 ± 0.37
CutMix Query 64.08 ± 0.57 79.14 ± 0.38 81.54 ± 0.36
InstaCrop Query 60.91 ± 0.55 76.64 ± 0.39 79.32 ± 0.37
RandomCrop Query 59.41 ± 0.56 75.06 ± 0.39 79.01 ± 0.36
InstaCrop Support + Query 58.62 ± 0.56 75.13 ± 0.39 77.08 ± 0.38
RandomCrop Support + Query 50.56 ± 0.53 64.55 ± 0.45 70.97 ± 0.40
InstaCrop Shot + Query 59.68 ± 0.55 75.67 ± 0.41 78.47 ± 0.37
RandomCrop Shot + Query 57.30 ± 0.53 71.69 ± 0.41 77.22 ± 0.38

Table 1. Instance Based Cropping (InstaCrop) Augmentations on CIFAR-FS for 1,5,10 Shot
learning with a ProtoNet using a ResNet-12 backbone.
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CIFAR-FS Instance Cropping Settings We first experiment on the CIFAR-FS dataset.
We attempt using our instance-based cropping augmentation module for query augmen-
tation, query + support augmentation, and query + shot augmentation in the 1-Shot,
5-Shot, and 10-Shot settings. We benchmark our model against a baseline of no aug-
mentation and global random cropping with scale [0.2, 1]. For the cropping invariance
module, we additionally have to set Hmin and Hmax, which enforce constraints on
the diversity of the learned crops. After a brief sweep, we found [3, 3.5] to be the best
setting, which is in line with the findings from Miao et al. (2022).

CIFAR-FS Instance Cropping Results From Table 1 we can see that the invariance
module is able to learn a better distribution over the space of possible crops than ran-
dom cropping, with higher accuracies for instance-based cropping when applied to all
three of query, query + shot, and query + support augmentation compared to the random
baseline. In a meta-learning setting, since the invariance module is learning augmenta-
tions just over the distribution of training tasks, we hypothesize that the improvement
in performance comes from the module learning the most effective crops to enhance the
pool of training time query images, which allows the meta learner to more effectively
generalize at meta test time.

The gap between random and instance cropping is especially noticeable for query
+ support augmentation, suggesting that the learned invariance module is able to learn
to avoid crops that entirely exclude the object in the image or that could result in a
different label, which is especially important for augmentations on the support images.

Additionally, we find that instance-based cropping is able to consistently outper-
form the baseline of no augmentation when applied to just the query set. For query +
support and query + shot augmentation, instance cropping leads to either equivalent or
slightly worse accuracy, which is in line with findings for random augmentations from
Ni et al. (2020). In particular, we hypothesize that shot augmentation could contribute to
overfitting issues on the support set, canceling out any potential benefit from the learned
instance augmentation.

However, we find that unlike in the traditional supervised setting, CutMix drasti-
cally outperforms the best instance-based cropping method, with around an additional
2-3% gain in performance relative to instance-based cropping on the query set. We
hypothesize that data augmentations with relatively stronger regularizing effects such
as CutMix are even more effective for meta-learning due to the increased potential
for overfitting in the meta-learning process. Cropping is typically combined with addi-
tional augmentations such as random masking and color jittering for additional regu-
larization - future directions for instance-based augmentations for meta-learning could
include learning instance-based augmentations for other augmentations in parallel with
the cropping module for a meta-learning setting.

We can see the difference in the generalization gap between methods in Figure 4,
where there is clear overfitting in the no augmentation setting, slight improvements in
the generalization gap for random cropping and instance-based cropping, and almost
no generalization gap for CutMix, leading to the highest relative accuracy.
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Fig. 4. CIFAR-FS 1-shot average training accuracy (blue) and average validation accuracy (or-
ange) for CutMix, random crop, InstaAug crop, and no augmentation on the query set. All runs
additionally used task augmentation with rotation. CutMix performed the best and the gener-
alization gap for CutMix is much less when compared to random crop, InstaAug crop, and no
augmentation.

Method Mode 1-Shot
No Aug - 61.84 ± 0.53
CutMix Query 66.14 ± 0.52
InstaCrop Query 62.88 ± 0.52
RandomCrop Query 62.84 ± 0.52

Table 2. 1-Shot performance of Instance Based Cropping on Mini-ImageNet

Mini-ImageNet Instance Cropping Results Due to limited time and increased com-
putational requirements of Mini-ImageNet, we were unable to run as many experiments
for Mini-ImageNet. We used the same scale parameterization for random cropping and
the same entropy parameters as the the CIFAR-FS Experiments. We find a similar trend
in that CutMix drastically improves over the no augmentation baseline, while both crop-
ping methods improve just marginally over the baseline.

4.3 Test Time Data Augmentation

We additionally experiment with using our learned instance-based augmentation at test
time to generate additional views over meta-test query images. In Table 3, we can see
that using our learned invariance module for test time data augmentation leads to a
decrease in accuracy, with the trend showing that additional views using the instance-
based cropping lead to further decreases in accuracy. On the other hand, increasing
the number of views using random cropping shows the opposite trend, with accuracy
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increasing as a function of the number of views. We hypothesize that since the instance
cropping module learns the underlying distribution of the classes in the meta-training
task set, it does not generalize well when applied to test time samples when compared
to a random cropping baseline. This supports our earlier hypothesis that the instance
cropping module successfully learns the underlying training task distribution, which is
why it outperforms the random baseline when applied to the training query set.

Method Mode Number of Samples Accuracy
Augmentation No Test Aug - 1 76.64 ± 0.39
Instance Cropping Query 2 75.55 ± 0.4
Instance Cropping Query 5 73.87 ± 0.4
Instance Cropping Query 10 72.99 ± 0.41
Random Cropping Query 2 76.86 ± 0.39
Random Cropping Query 5 77.01 ± 0.39
Random Cropping Query 10 77.12 ± 0.39

Table 3. CIFAR-FS Test Time Data Augmentation - evaluations carried out in a 5-shot 5-way
setting.

5 Conclusions and Future Work

Global data augmentation for meta-learning is known to improve accuracy, but there is
limited experimentation performed on instance-based augmentation in a meta-learning
setting. From our results, we support past findings for global augmentations that instance-
based support and shot augmentation can harm performance while instance-based query
augmentations can improve performance. We also find that using instance-based crop-
ping for query augmentation performs better than random cropping, suggesting that it
is valuable for an instance-based data augmentation to learn the underlying training
task distribution, however, we find that CutMix still results in higher accuracy. We hy-
pothesize that stronger regularizers are needed for meta data augmentation compared to
traditional supervised settings.

Additionally, we find that unlike in the supervised setting, applying instance-based
data augmentations to generate additional image views at test time does not improve
classifier accuracy. We suggest that this is a result of the instance-based augmentation
module being fit to the training task distribution rather than the test task distribution.

As a result of our findings, one avenue of future work could explore additional
instance-based augmentations that are “stronger” in nature (i.e. random masking) or
the effect on performance by stringing together multiple instance-based augmentations.
Furthermore, one could also investigate instance-based data augmentations across dif-
ferent datasets and meta-learning model types.
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