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Abstract

In this paper, we improve the robustness of au-
tomatic speech recognition models on subsets
of the ML-SUPERB benchmark by applying
Group Distributionally Robust Optimization
(Group-DRO). The ML-SUPERB (Shi et al.,
2023) benchmark consists of a variety of mul-
tilingual speech recognition datasets, includ-
ing Multilingual Librispeech, Commonvoice,
Fleurs, and more (Ardila et al., 2019; Pratap
et al., 2020; Conneau et al., 2023). The diver-
sity of the benchmark, both in terms of low-
resource language data as well as in dataset
source and collection methods, makes it an in-
teresting challenge for studying generalization
and robustness in automatic speech recogni-
tion models. Via experiments on the Bantu
family of languages, and on English audio
across various ML-SUPERB datasets, we show
that Group-DRO can help improve worst case
performance across more challenging groups
while maintaining high average performance.

1 Introduction

Automatic Speech Recognition (ASR) has emerged
as an impactful technology showing up in applica-
tions such as virtual-assistants, transcription ser-
vices, customer service and more. ASR models
like Wav2Vec2 (Baevski et al., 2020), XLSR (Con-
neau et al., 2020), and Whisper (Radford et al.,
2023) have made strong progress in transcribing
spoken language, particularly English, into written
text with high accuracy, making ASR an integral
area of focus for high impact real-world applica-
tions. However, despite the success of such models
on high-resource languages (languages that have
substantial linguistic resources and support) such
as English, ASR models face many challenges with
regards to robustness across diverse languages, cul-
tures, and accents.

As a result, a key issue in ASR’s deployment
is their performance across these unique, diverse

groups. Since commonly deployed ASR back-
bones such as Whisper are typically trained using
standard empirical risk minimization techniques,
in which loss metrics are averaged across mini-
batches during training time (Radford et al., 2023),
the performance of these models on low-resource
languages and data sources with fewer training ex-
amples is naturally downweighted. This can lead to
inequitable user experiences for users belonging to
these groups, which is more and more undesirable
the more ASR technology advances and gradually
begins to replace human in the loop systems.

To circumvent these inequities, we can view low-
resource languages and uncommon data sources
as out of distribution training examples that our
ASR models need to be able to generalize to. By
overfitting to higher resource settings, ASR models
learn spurious correlations that may not hold for
atypical groups. Group Distributionally Robust Op-
timization (Group-DRO) (Sagawa et al., 2019) is
an optimization technique proposed to help resolve
this disparity in atypical group performance by op-
timizing over a weighted worst case group loss
rather than an average empirical risk minimization
loss. Group-DRO has been shown to lead to more
robust models over image recognition and text clas-
sification datasets like CelebA (Liu et al., 2018),
Waterbirds (Sagawa et al., 2019), and MultiNLI
(Williams et al., 2017).

In this paper, we apply Group-DRO to speech
recognition, an unexplored application in the origi-
nal Group-DRO paper. Our work aims to improve
the robustness of ASR systems, especially for low-
resource groups that traditionally experience low
test-time performance. Our experiments and con-
clusions demonstrate Group-DRO’s effectiveness
in building more reliant ASR systems and we hope
that others will continue to explore its application
in this sub-field.



2 Related Works

2.1 Distribution Shift and Robust
Optimization

The primary source that we draw inspiration from
for our work is Group-DRO (Sagawa et al., 2019),
which iterates on prior work in methods for robust
optimization (Duchi et al., 2021; Ben-Tal et al.,
2013), and shows that optimizing over the worst
case group loss, combined with stronger regular-
ization techniques such as a heavier ℓ2 loss or early
stopping, can provide robustness benefits for over-
parameterized neural network models. Group-DRO
is proposed as an alternative to the standard ma-
chine learning paradigm of empirical risk mini-
mization (ERM), in which average loss over all
samples is minimized.

θ̂ERM := argmin
θ∈Θ

E(x,y)∼P̂ [ℓ(θ; (x, y))], (1)

Group-DRO is defined as follows:

θ̂DRO := argmin
θ∈Θ

{
R̂(θ) := max

g∈G
E(x,y)∼P̂g

[ℓ(θ; (x, y))]
}
,

(2)

Another potential alternative to ERM that has been
explored is Invariant Risk Minimization, which is
a learning algorithm proposed by (Arjovsky et al.,
2019), in which the goal is to learn representations
such that the optimal classifier on top of that repre-
sentation matches for all environments.

2.2 Datasets

ML-SUPERB is a large scale multilingual bench-
mark consisting of existing datasets and evalu-
ated on state-of-the-art models including XLSR,
Wav2Vec2, Whisper, and more (Conneau et al.,
2020; Baevski et al., 2020; Radford et al., 2023).
ML-SUPERB aims to provide a robust and stan-
dardized benchmark for evaluating speech under-
standing models, and addresses the need for a com-
prehensive evaluation framework that encompasses
a wide range of speech processing tasks across dif-
ferent languages. It is used to test the performance
of a multitude of speech processing tasks including:
automatic speech recognition, speaker identifica-
tion, and emotion recognition. Results across dif-
ferent models/tasks suggest where improvements
can be made and offer more insight into how to
better develop speech processing systems.

3 Data Exploration

For our data, we use the ML-SUPERB dataset,
consisting of over 143 languages across multiple
sources. The dataset is structured as follows:

- [Data_Source_Name1]
- [Lang_ID1]

- transcript_10min_dev.txt
- transcript_10min_test.txt
- transcript_10min_train.txt
- transcript_1h_train.txt
- wav
- [Data_Source_Name1]_[Lang_ID1]_000001.wav
- [Data_Source_Name1]_[Lang_ID1]_000002.wav

- ...
- [Lang_ID2]

- transcript_10min_dev.txt
- transcript_10min_test.txt
- transcript_10min_train.txt
- transcript_1h_train.txt
- wav
- [Data_Source_Name1]_[Lang_ID2]_000001.wav
- [Data_Source_Name1]_[Lang_ID2]_000002.wav

- ...
- ...

In Figure 1, we show the drastic difference in the
number of training samples between high and low-
resource languages, with ML-SUPERB consisting
of more than 6000 English utterances, but only
around 150 training utterances for low-resource
languages like Umbundu and Lingala. In Figure
2, we show the datasets that makeup the parts of
ML-SUPERB. We can see that almost half of the
examples in the dataset come from the Common-
voice dataset (Ardila et al., 2019), which could
potentially lead to models being evaluated on ML-
SUPERB overfitting to the specific distribution of
audio samples provided in that dataset. We plan to
further investigate dataset source as a type of distri-
bution shift, and whether or not we can potentially
apply Group-DRO for improving performance on
datasets with fewer examples while maintaining
high average performance.
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Figure 1: Top and bottom 10 languages by number of
training examples.
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Figure 2: ML-SUPERB datasets sorted by number of
training examples.

4 Methods

4.1 Models
We choose to use the pretrained Whisper (Radford
et al., 2023) family of models from OpenAI for our
experiments, specifically the tiny, base, and small
Whisper models. We choose smaller models due to
compute resource limitations. These are pretrained
on 680k hours of labeled speech data, with 117k
hours coming from varying low and high-resource
languages and the rest coming from English. We
use these models for both zero-shot learning as well
as finetuning on the ERM + Group-DRO optimiza-
tion objective.

Figure 3: Whisper model architecture from OpenAI.

4.2 Group-DRO Loss
Our approach focuses on applying Group-DRO
during the finetuning phase in order to improve
WER for poor performing groups while also low-
ering the overall loss seen from our baseline ex-
periments. We update the weights of the model
θ using stochastic gradient descent and the prob-
ability distribution for each group q′ in following
manner:

Input: Step sizes ηq, ηθ; Pg for each g ∈ G
Initialize θ(0) and q(0)

for t = 1, . . . , T do
g ∼ Uniform(1, . . . , )
x, y ∼ Pg

q′ ← q(t−1) ; q′g ← q′g exp(ηqℓ(θ
(t−1); (x, y)))

q(t) ← q′/
∑

g′ q
′
g′

θ(t) ← θ(t−1) − ηθq
(t)
g ∇ℓ(θ(t−1); (x, y))

end

Algorithm 1: Group-DRO optimization algorithm.

The standard ML-SUPERB dataset contains only
audio as well as the reference text transcription,
thus during data preprocessing for our experiments,
we append a group index field identifier which
is used to update the correct group probabilities
during Group-DRO finetuning.

5 Experiments

5.1 Baseline Experiments
We first evaluated Whisper-Small’s speech recog-
nition capabilities across low-resource languages
from the Bantu family of languages including:
Swahili, Amharic, Swati, Xhosa, Tswana, and oth-
ers using Word Error Rate (WER) as our primary
evaluation metric. We also include WER results
on Dutch and English (the two languages with the
most training examples in ML-SUPERB) for ref-
erence. Our baseline results are shown in Table 1.

Whisper-Small
Language Whisper Small Low-Resource
Basaa 1.54 ✓
Kinyarwanda 4.70 ✓
Ganda 1.35 ✓
Northern Sotho 1.73 ✓
Chichewa 1.58 ✓
Swati 1.89 ✓
Swahili 1.36 ✓
Tswana 3.26 ✓
Venda 0.93 ✓
Xhosa 3.54 ✓
Zulu 2.31 ✓
Dutch 0.21
English 0.13

Table 1: Baseline WER Across Bantu Family Lan-
guages and more.

We use language specific processors for infer-
ence on Whisper where possible, and use the
Swahili tokenizer provided by Whisper for Bantu
languages that do not have their own processor. We
can see that the pretrained Whisper baselines have
fairly high average WERs, especially in compar-
ison to high resource languages like English and
Dutch.

As an additional baseline, we finetune Whisper-
Tiny on the 1 hour training set of 3 selected Bantu



Model
Language WER

bas kin lug nso nya ssw swa tsn ven xho zul avg max
whisper-tiny 1.23 2.66 1.22 1.24 2.18 1.43 2.22 2.39 1.15 3.13 2.78 2.08 3.13

+ ERM 0.70 1.47 0.76 0.48 0.81 0.62 0.63 0.51 0.61 0.62 0.65 0.66 1.47

+ GroupDRO 0.72 1.12 0.75 0.58 0.75 0.72 0.66 0.71 0.65 0.85 0.76 0.73 1.12

whisper-base 1.46 2.29 1.15 1.18 1.40 2.62 2.31 2.23 1.20 1.98 1.80 1.86 2.62

+ ERM 0.58 0.93 0.74 0.38 0.73 0.51 0.53 0.39 0.49 0.52 0.53 0.52 0.93

+ GroupDRO 0.62 1.13 0.71 0.44 0.68 0.57 0.58 0.51 0.59 0.58 0.57 0.59 1.13

whisper-small 1.54 4.70 1.36 1.73 1.59 1.90 1.37 3.26 0.93 3.55 2.31 2.32 4.70

+ ERM 0.56 0.89 0.68 0.33 0.61 0.43 0.42 0.26 0.43 0.41 0.41 0.44 0.89

+ GroupDRO 0.52 0.85 0.68 0.33 0.49 0.45 0.45 0.35 0.45 0.47 0.47 0.47 0.85

Table 2: Group-DRO improves worst case group performance compared to ERM at the cost of Average WER

Model
Source WER

cv fl nchlt vf mls vp swc mai lad avg max
whisper-tiny + ERM 0.42 0.28 0.24 0.15 0.30 0.20 0.33 0.16 0.08 0.24 0.42

whisper-tiny + Group-DRO 0.39 0.27 0.26 0.16 0.29 0.20 0.34 0.14 0.11 0.24 0.39

whisper-base + ERM 0.34 0.23 0.22 0.11 0.25 0.16 0.30 0.13 0.15 0.21 0.34

whisper-base + Group-DRO 0.33 0.20 0.22 0.11 0.24 0.17 0.29 0.13 0.20 0.21 0.33

whisper-small + ERM 0.31 0.19 0.20 0.11 0.20 0.15 0.26 0.17 0.11 0.19 0.31

whisper-small + Group-DRO 0.28 0.19 0.19 0.09 0.20 0.14 0.24 0.11 0.09 0.17 0.28

Table 3: Word Error Rates (WER) across different sources: Group-DRO obtains lower average and max WER
compared to ERM across all models

languages - Swahili, Swati, and Xhosa. We show
our results in Table 4. We train for 300 steps, with
batch size 64 and learning rate 10−4, and find that
we are able to significantly improve performance
simultaneously across all three languages, despite
mixing training examples, and using the Swahili
tokenizer for all three.

Whisper-Tiny Fine Tuned
Language WER
Swahili 0.58
Swati 0.57
Xhosa 0.66

Table 4: Whisper-tiny Baseline trained on swa,ssw, and
xho

5.2 Group-DRO/ERM Finetuning
For our core experiments we finetune the three
Whisper models using two optimization strategies:
ERM and Group-DRO in order to compare how
they affect WER. Our groups that we choose are
both language dependent (Bantu family) as well
as source dependent (English data from various
sources of ML-SUPERB benchmark).

Our training setup that we use for our experiment
runs are as follows: we perform 1000 training steps,
use stochastic gradient descent with cross entropy
loss as our learning objective, use a linear learning

rate scheduler for stabilized convergence, and a
batch size of 64.

In our Bantu language family experiments, we
obtain results for 3 Whisper models using 3 differ-
ent training strategies: zero-shot learning, ERM op-
timization, and Group-DRO optimization. Table 2
showcases the results we achieve. We see that mod-
els evaluated in the zero-shot setting without any
finetuning lead to a high average WERs, demon-
strating that the models struggle significantly with-
out further finetuning on lower-resource languages,
even for languages that were included in the pre-
training set like Swahili (swa). Finetuning with
ERM and Group-DRO optimization strategies lead
to a 60%+ decrease in WER across all models and
languages, showing that the models perform well
at transcribing low-resource languages after apply-
ing both strategies. We find that for the Whisper-
Tiny and Small models, the maximum group WER
across Bantu languages is lower for Group-DRO
compared to ERM, suggesting that Group-DRO’s
optimization approach has succeeded in reduc-
ing errors across worst-case language distributions
compared to a standard ERM approach. More
specifically, languages such as Kinyarwanda (kin),
which has a top three WER prior to finetuning,



experiences a lower WER with Group-DRO com-
pared to ERM. Thus, from our results, we observe
that Group-DRO improves worst case group perfor-
mance for some groups compared to ERM, with the
tradeoff of a higher overall WER across languages
which we discuss further in Conclusion.

For our experiments in which we organize
groups by data source within ML-SUPERB (where
all training data is English examples), we follow a
similar process of obtaining results for 3 Whisper
models using ERM and Group-DRO objectives. Ta-
ble 3 summarizes the WERs we get across sources.

We find that Group-DRO consistently achieved
the same or better WERs compared to ERM across
all three models. Specifically, for the Whisper-Tiny
model, the average WER remained the same (0.24)
under both ERM and Group-DRO, but the maxi-
mum Group WER decreased from 0.42 to 0.39 with
Group-DRO. This indicates that Group-DRO was
more effective at handling the worst-performing
data sources, thus improving overall robustness.

For the Whisper-Base model, the average WER
was identical (0.21) for both objectives. How-
ever, the maximum group WER under Group-DRO
(0.33) was slightly lower than under ERM (0.34).
Likewise, the Whisper-Small model showed a sim-
ilar trend. While the average WER improved
slightly from 0.19 under ERM to 0.17 under Group-
DRO, the maximum WER saw a more noticeable
reduction, from 0.31 to 0.28. These slight improve-
ments suggests that Group-DRO managed to re-
duce errors for the worst-performing groups while
maintaining good overall performance across all
groups.

6 Conclusion

We found through our methodology and experi-
ments that finetuing with Group-DRO leads to sig-
nificant improvements for worst-case performing
groups and also lowers the overall average and
maximum WER across groups compared to zero-
shot learning. We compared the results of Group-
DRO to the standard ERM optimization strategy
and found tradeoffs between the average WER and
maxiumum WER, with ERM in most cases leading
to a lower average WER whereas Group-DRO led
to a lower maximum WER in most cases.

Although a model with a lower average WER
might seem more optimal, it’s important to con-
sider the use cases of an ASR system which need
to be robust to many group distributions. For ex-

ample, a finetuned ASR system optimized with
an ERM objective might perform generally well
across most of the low-resource groups it was fine-
tuned on, but might perform noticeably worse for
one group compared to the others, thus leading to
the inequities discussed in Introduction. We argue
that despite potentially yielding a higher average
WER under certain circumstances (contingent upon
group division), Group-DRO offers a more favor-
able outcome by mitigating the maximum group
WER. This outcome is preferable as it ensures a
more equitable distribution of performance across
various groups which is especially important in
real-world applications.

Our results show that Group-DRO can have im-
pacts beyond the applications explored in the origi-
nal paper (object recognition and natural language
inference) and can be applied to ASR systems for
the purpose of improving their robustness across
low and high-resource groups. In our paper, we cat-
egorized these groups by language and data source,
however, this is an avenue of future work that ought
to be further explored. Different groupings might
include categorizing by accents from a particular
language, age, etc in order to further improve the
robustness of ASR systems. This of course is de-
pendent on the desired application for the system.

Lastly, we argue that distribution shift in ASR
is a research field that ought to be further explored
in order to understand how languages, dialects,
groups, and other speech characteristics change
over time, and how to develop robust systems that
are capable of keeping up with these shifts. As we
have noted in our paper, understanding distribution
shift can help in designing ASR systems that are
more inclusive and fair, reducing biases that can
arise from underrepresented groups in the training
data. It can also facilitate the creation of adap-
tive learning algorithms that continuously improve
as they are exposed to new data, thus enhancing
the long-term effectiveness and reliability of ASR
technologies. Furthermore, addressing distribution
shift is essential for the deployment of ASR models
in critical applications where accuracy and reliabil-
ity are of upmost importance, such as: healthcare,
legal transcription, and emergency response sys-
tems. Thus, this area of research holds significant
potential for advancing the capabilities and appli-
cations of ASR systems in the real world.



7 Contributions

JM and ET were both involved in model selec-
tion, gathering baseline results, experiment plan-
ning, integrating Group-DRO optimization into the
codebase, and writing the final paper/poster. ET
was responsible for data exploration and running
experiments. JM was responsible for experiment
analysis.
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