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Abstract

In this project, we investigate the impact of self supervised pretraining objectives
on OOD robustness on downstream tasks. The two dominant paradigms for self
supervised pretraining of vision transformer models for image and video repre-
sentation learning are contrastive learning (i.e. MoCo, DINO), and masked image
modelling (i.e. BEiT, MAE, SimMIM). We conduct experiments on iWildCam-
Wilds, and find that although with linear probing, ViTs pretrained with contrastive
learning objectives outperform masked image modelling objectives in terms of
both effective and absolute robustness, fine tuning largely closes the gap in terms
of effective robustness between the two methods. Additionally, although empirical
risk minimization (ERM) methods dominate the iWildCam-Wilds leaderboard, we
experiment with using invariant risk minimization (IRM) as an additional method
for increasing the effective robustness of ViT models, but find that it is unable
to match the performance of a model trained with ERM. Finally, we provide an
analysis of the self attention mechanism comparing across different pretraining
objectives, fine tuning vs linear probing, and in distribution vs out of distribution
test data from iWildCam-Wilds. Code at: github.com/erictang000/wilds.

1 Introduction

Self-supervised learning has become the default method for pretraining large machine learning models
across domains, both in natural language processing, with the emergence of the Transformer for
machine translation (Vaswani et al. [2017]), and follow-up works including BERT and GPT for more
general language modelling (Devlin et al. [2018], Brown et al. [2020]), as well as recently in the field
of computer vision, with work like SimCLR and MAE (He et al. [2021], Chen et al. [2020b]) showing
strong results across various image recognition tasks by utilizing large scale unlabeled image datasets
and self supervised pretraining tasks. With the emergence and stronger potential performance of the
Vision Transformer (Dosovitskiy et al. [2020]), which requires more pretraining and data due in part
to the lack of inductive biases provided by the self-attention mechanism relative to convolutional
networks like ResNets (He et al. [2015]) that previously dominated Computer Vision benchmarks,
picking a self-supervised pretraining objective for learning strong general representations from is
more important than ever.

Self supervision has previously shown to be a strong method of increasing the robustness of machine
learning models to distribution shifts via pretext tasks and self supervised pretraining on downstream
task domains before pretraining (Hendrycks et al. [2019], Gururangan et al. [2020], Sun et al. [2019]).
However, prior work in the application of self-supervision for out of distribution robustness in
computer vision has largely focused on using self-supervision tasks like predicting the rotation of an
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image as an auxiliary task that is co-trained with a supervised classification task. Current pretraining
techniques on the other hand, typically consist of large scale self supervised learning from images
prior to any supervised learning for downstream classification tasks.

The two currently dominant paradigms for self supervised pretraining of ViT models can largely
be grouped into two sets (Park et al. [2023], Shekhar et al. [2023]) - Contrastive Learning (CL)
objectives (SimCLR, DINO, MoCo (Chen et al. [2020b], Caron et al. [2021], Chen et al. [2021])),
and Masked Image Modelling (MIM) objectives (MAE, BeiT, SimMIM (He et al. [2021], Bao et al.
[2022], Xie et al. [2022])). CL objectives involve putting images into an embedding space such that
they are close to positive samples, which often include different views of the same image using data
augmentations to prevent representation collapse, while being far away in the embedding space from
negative samples. Masked Image Modelling objectives consist of masking out patches of images, and
training a ViT model to reconstruct the masked tokens from the remaining patches. Intuitively, the CL
objective tends to learn higher level global features that are invariant across image views, while the
MIM objective tends to learn lower level pixel level features due to the nature of the reconstruction
task.

Given the prior work on the differences in representations learned by these two pretraining objectives,
as well as work showing that pretraining can help increase effective robustness of vision models on the
iWildCam-Wilds dataset (Miller et al. [2021]), we investigate whether the pretraining objective of ViT
models impacts their robustness to distribution shift. On extensive experiments on iWildCam-Wilds,
we find that the models that perform the strongest in terms of absolute out of distribution robustness
are linearly probed CL models, and that linearly probed MIM models show lower absolute and
effective robustness. However, we find that fine tuning both CL and MIM models on the downstream
task increases effective robustness for both pretraining objectives, closing the gap between the two,
but also decreases the absolute robustness of CL models. We additionally experiment with replacing
the standard ERM training with the IRM objective proposed by Arjovsky et al. [2020], however, it
shows lower absolute robustness without significant gains in effective robustness. Finally, in order
to investigate the nature of the representations learned by the two objectives, and how they might
contribute to learning robust representations, we visualize and analyze the self attention layers from
a CL and MIM Model (DINO and MAE), showing that fine tuning decreases the average attention
distance, resulting in more precise representations that are potentially more robust to distribution
shifts, and lead to higher effective robustness.

2 Related Work

2.1 Contrastive Learning vs Masked Image Modelling

Recent work from Shekhar et al. [2023] and Park et al. [2023] both investigate the differences in
representations learned by CL and MIM. Both works find that CL produces representations that lead
to stronger linear probing performance, since relevant class discriminative information is available
in the final CLS token, and that fine tuning MIM models leads to stronger performance than CL,
through a reorganization of class information to the final layer. The works also confirm the idea that
CL learns higher frequency global shape features, while MIM models learn lower frequency texture
based features. Park et al. [2023] also measure the robustness of both methods to artificially injected
noise, finding that CL is more robust to the noise due to the more texture based features learned
by MIM. However, neither of these works compare the robustness of different SSL pretrained ViT
models to natural distribution shifts, which we aim to do in this work.

2.2 Self Supervised Pretraining for Robustness

Hendrycks et al. [2019] and Sun et al. [2019] demonstrated the benefits on robustness of using pretext
tasks like rotation for self supervised training that accompanied traditional supervised methods. Guru-
rangan et al. [2020] showed that continuing to perform self supervised pretraining prior to supervised
fine tuning on downstream tasks shows benefits in model performance and absolute robustness.
Bordes et al. [2022] find that self supervised methods may be more robust to adversarial perturbations
than fully supervised methods. Additional work has also been done on adding adversarial training
into self supervised pretraining recipes (Chen et al. [2020a]), however, we do not consider adversarial
settings in this work. Our work specifically focuses on self supervision as a standalone task, and
specifically on the comparison between the CL and MIM objectives
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3 Setup

3.1 Contrastive Learning Methods

Following Park et al. [2023] and Shekhar et al. [2023], we study DINO (Caron et al. [2021]) and
MoCo-v3 (Chen et al. [2021]) as the methods for SSL CL on ViTs. DINO uses a self distillation
technique, where two views of the same image are passed through a student and teacher encoder, and
a cross entropy loss is used to enforce their similarity. The gradients are then propagated through
the student, and the teacher’s weights are updated as an exponential moving average of the student’s.
Similarly, MoCo uses a momentum encoder that is updated by taking an average of the updates on
the query encoder. MoCo takes the standard approach of comparing a query key to a dictionary for
computing a contrastive loss, but extends the size of the dictionary during the contrastive learning
process by using previously encoded minibatches.

3.2 Masked Image Modelling Methods

For MIM, we consider MAE (He et al. [2021]), BeiT (Bao et al. [2022]), and SimMIM (Xie et al.
[2022]). MAE uses an encoder decoder architecture, where the encoder takes in a subset of the
patches from an image, and generates representations for them. These representations are then added
to a set of mask tokens, and fed to the decoder, which outputs a reconstruction of the image. The
model is trained end to end using a pixel wise reconstruction loss. The encoder is then used for
downstream image classification tasks. BeiT poses the task of reconstruction via visual tokens, where
image patches are first processed by a tokenizer, then an encoder takes in a masked representation
and attempts to match the corrupted representation with the visual tokens. SimMIM is largely similar
to MAE, but uses an l1 loss rather than an MSE loss over the reconstruction target.

3.3 iWildCam Wilds Dataset

The iWildCam dataset (Koh et al. [2020]) consists of images captured of 182 different animal species
across a number of different camera traps. The distribution shift observed in the dataset is in the shift
from different camera deployments, and the task consists of a standard multi-class image classification
of animal species across different domains. The dataset is split into a training set with 129809 images,
an in-distribution and out of distribution validation set with 7314 and 14961 images respectively, and
an in-distribution and out of distribution test set with 8154 and 42791 images.

3.4 IRM

Invariant Risk Minimization is a learning algorithm proposed by Arjovsky et al. [2020], as an
alterative to the standard approach of empirical risk minimization in machine learning, in which the
goal is to learn representations such that the optimal classifier on top of that representation matches
for all environments.

4 Approach

We carry out a controlled study of Masked Image Modelling and Contrastive Learning as self
supervised pretraining objectives for vision transformer models. As Fang et al. [2022] find that
the additional robustness of CLIP is in large part due to additional data rather than the captions or
self supervised pretraining methods, we ensure that models that we evaluate are pretrained solely
on the ImageNet-1k data, with no extra sources of supervision or image data that could impact
robustness. Models are then either linear probed or fine tuned on the downstream task, with the
default hyperparameters from the Wilds dataset being selected for tuning and evaluation. We do not
perform a hyperparameter sweep using the validation set, since our objective is solely to compare
the performance of various pretrained models, with all other things held constant, and we do not
necessarily care about the strength of the methods relative to other models and methods.

5 Empirical Results

Holding all other things constant, we fine tune and/or linear probe the following models using ERM:
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Figure 1: ID vs OOD Accuracy and F1 for CL and MIM models on iWildCam-Wilds. CL models with
Linear Probing show the strongest absolute robustness, with significantly higher effective robustness
than MIM models with Linear Probing. However, fine tuning closes the gap, increasing effective
robustness for both methods, decreasing accuracy and F1 for CL, and increasing accuracy and F1 for
MIM. Additionally, we show results for CL with IRM, and find that it performs similarly in terms of
effective robustness to using a standard ERM method.

• Contrastive Learning:
– DINO: ViT-B/16, ViT-S/16, ViT-S/8, ViT-B/8, XCiT-S/16, XCiT-S/8, XCiT-M/16,

XCiT-M/8
– MoCo-v3: ViT-B/16

• Masked Image Modelling
– MAE: ViT-B/16, ViT-L/16
– BeiT-v2: ViT-B/16, ViT-L/16
– SimMIM: ViT-B/16

Additionally, we fine tune a subset of the DINO models using the IRM algorithm, the results of which
can be found in 1. We use a batch size of 16, an input image resolution of (224, 224), a standard cross
entropy loss, a learning rate of 3e-5, no weight decay, and an Adam optimizer for 12 epochs.

Inspired by Miller et al. [2021], in Figure 1, we plot the accuracy and F1 scores of our SSL pretrained
models on the in distribution and out of distribution test sets of iWildCam-Wilds. We do not use the
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Figure 2: MIM tends to capture more local features, especially in early transformer layers, compared
to CL, which more consistently captures more global features. Results shown using ViT-B/16 fine
tuned for both MAE and DINO.

probit transform for Figure 1, but doing so does not change any of the observed trends. From Figure
1, we can see that CL models with linear probing show the best absolute robustness, with high ID and
OOD test accuracy. CL linear probed models show a stronger effective robustness than MIM linear
probed models, with a slope of 0.94 for CL compared to a slope of 0.5 for MIM considering accuracy
and a slope of 0.91 vs 0.44 for F1. However, this gap is somewhat closed when both methods are fine
tuned, with MIM showing a slope of 0.86 compared to a slope of 0.78 for CL when consdering F1,
and a slope of 1.41 compared to 1.87 when considering accuracy. Noticeably, the slopes for both CL
and MIM are above 1 when considering accuracy, indicating stronger effective robustness than when
linear probing.

Additionally, we observe that fine tuning CL pretrained models with IRM rather than ERM does not
seem to result in an increase in either absolute or effective robustness, which is consistent with prior
results on iWildCam-Wilds that show that ERM methods seem to be able to perform the best on the
OOD test set.

From our experiments, we conclude that CL models with linear probing are more robust than MIM
models with linear probing, but that fine tuning for models trained with either pretraining objective
leads to an increase in effective robustness, although potentially at the cost of absolute robustness.

5.1 Analyzing Self-Attention

In order to better understand the mechanisms behind the differences in learned representations
between MIM and CL pretrained models, we visualize the attention maps on examples from the ID
test set and OOD test set, which can be seen in Figure 2 and Figure 3. We see confirmation of prior
results that MIM tends to capture more local features, particularly in earlier layers, while CL tends to
capture more global features. From Figure 3 we can see that fine tuning of both DINO and MAE
models results in less noisy self attention maps for examples both from the ID and OOD test sets.
This potentially corresponds with the increase that we observed in the effective robustness of the
models when fine tuned.

In addition to visualizing self attention maps, we also measure the average distance between the
query token and the key tokens across both fine tuned and linearly probed MAE and DINO models.
This roughly corresponds to the size of the receptive field in convolutional models. From Figure 4,
we can see that fine tuning leads to a decrease in the average attention distance, especially for the
MAE model, which we suggest corresponds to the increase in effective robustness observed in Figure
1 when fine tuning MIM models. The drop in attention distance for the fine tuned DINO model in
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(a) Test ID (b) Test OOD

Figure 3: Fine tuning decreases the noise of the self attention operation for both MAE and DINO,
both ID and OOD, corresponding with an increase in effective robustness. However, for CL models,
this also leads to a decrease in the accuracy and F1 of models, suggesting that some useful global
features from SSL pretraining may be lost during fine tuning. Results shown use ViT-B/16.

Figure 4: Fine Tuning leads to lower average distance attentions for MAE OOD, which also corre-
sponds to an increase in both absolute and effective robustness. Results shown use ViT-B/16

Figure 4 corresponds with a decrease in absolute robustness and OOD accuracy, suggesting that
fine tuning could potentially cause CL trained models to lose some global features learned during
pretraining.

6 Discussion and Conclusions

In this work, we investigated the impact of SSL objectives on OOD robustness using iWildCam-Wilds.
We found that with linear probing, ViTs pretrained with contrastive learning objectives outperform
masked image modelling objectives in terms of both effective and absolute robustness. Although fine
tuning largely closes the gap in terms of effective robustness between the two methods, it comes at
the cost of absolute robustness of CL models. In order to investigate the effect of fine tuning on both
MIM and CL pretrained models, we visualize and analyze the self attention layers from a CL and
MIM Model (DINO and MAE), showing that fine tuning decreases the average attention distance,
resulting in more precise representations that are potentially more robust to distribution shifts, and
lead to higher effective robustness. However, this potentially harms CL accuracy more than MIM
accuracy due to the global nature of the features learned by CL methods.

Future work would involve replicating these results across additional distribution shifts and with
stronger models trained with CL and MIM. In addition, many models are now combining the
two objectives in order to get the best of both worlds - seeing whether these models show stronger
robustness OOD and learn strong representations would also be an interesting line of work to explore.
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