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1 Introduction

In this project, we aimed to implement CPU work stealing from a shared work queue for the Smith-Waterman
algorithm. Research has showed that the most optimal CPU implementation of Smith-Waterman is competitive
with GPU implementations for an instruction set (SSE2) an implementation from 2013 [3] - thus it is important to
both be able to take advantage of the parallel computation ability of GPUs, and the lack of the need for transfer
latency on CPU, in order to optimize the Smith-Waterman algorithm on high performance compute clusters, where
the compute environment is heterogeneous.

For the project, we worked off of an implementation of GPU-BSW [1], which is a batched version of the Smith-
Waterman algorithm, for running parallel alignment computations on GPU owning threads. For non GPU owning
threads, we used a SIMD version of Smith-Waterman [2]. We integrated the two by updating the kernel calls of
the GPU-BSW library to pop work off a shared atomic work queue used by all of the currently running threads.
We showed steady performance improvements with this split CPU/GPU approach to tackling Smith-Waterman, and
showed how these two implementations can be used in conjunction with one another rather than independently.

In addition to this basic integration of CPU and GPU, we attempted additional optimizations, including work
stealing on GPU owning threads, and tuning batch sizes for CPU and GPUs to take or block work off of the shared
queue.

2 Prior Work

In recent years, advances in genomic sequencing have yielded large amounts of sequence data, of which computational
analysis is required. A key step in this analysis is sequence alignment, in which the most similar regions between a
query and reference sequence are found; a subset of this analysis is local sequence alignment, in which the most similar
subsequence is computed. Although approximate methods exist, there is still great interest in using advances in high
performance and parallel computers in order to find the exact solution to the local sequence alignment problem using
the Smith-Waterman algorithm.

Recent work which has explored the space of using GPUs as an intermediate in computing local alignment for
includes GASAL2 [5], which provides a CUDA library for various DNA and RNA sequence alignment algorithms,
and the basis for this project, GPU-BSW [1], which provides an algorithm for performing batched Smith-Waterman
on GPUs. Parallel CPU implementations of Smith-Waterman have also been deeply explored by researchers in the
last few decades - prior work includes various versions of Smith-Waterman using various parallel libraries, including
SIMD [2], OpenMP, and MPI.

However, there has been a lack of work surrounding adapting Smith-Waterman to the heterogeneous computing
environment that shows great promise for further optimizing the speed of the local alignment problem due to the
potential of having relatively larger numbers of CPUs available due to global GPU shortages.

3 Methods and Approach

Our solution to integrate the GPU and CPU implementations used a single shared global atomic work queue for
both GPU owning and non GPU owning CPU threads to take work off of. Each GPU owning thread would take
20000 alignments to perform in parallel, and each CPU thread would take 10 alignments to perform sequentially
(taking just 1 alignment results in thrashing behavior). The exact implementation used OpenMP to specify per
thread behavior with a shared pointer and work stolen counter that would only be incremented in atomic sections
of the code.
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We converged on this approach after realizing that it would be a poor fit to define the load balancing using
OpenMP task and target directives, which we discuss a bit more in section 7.1.

4 Results

We found that we were able to achieve significant increases in runtime that scaled relatively similar to projected
optimal performance in a heterogeneous GPU-CPU environment. We have also added another environment with a
faster CPU and slower GPU to contrast with the Cori environment, which uses top of the line V100 GPUs.

Figure 1: Here we have our baseline performance of GPU-BSW

Figure 2: Here we show the performance of CPU-SSW. The performance of this SIMD implementation seems most
closely tied to the number of physical cores. On these Intel processors that is half the number of threads for our
given allocation, or eight (8) for the i7 and five (5) for the Xeon
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Figure 3: Combining the rate of alignments from both solutions we estimate a lower bound*

Figure 4: Actual performance approaches our estimated lower bound. The dark red bars actually performed worse
than the GPU only solution, which is shown in green. The blue bar represents the quickest.

Figure 5: Comparing to the GTX 960 which is more exaggerated with a faster CPU and slower GPU.
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5 Optimizations

5.1 Host Work Stealing

In our initial implementation, the thread hosting a GPU does not process alignments. Here we show a small clip of
CUDA C that demonstrates how to do concurrent work on the CPU between kernel launches.

cudaEvent_t event;

cudaEventCreate (& event)

some_kernel_call <<<BLKS ,THRDS ,0,streams [0]>>>();

cudaEventRecord(event ,streams [0]);

while(cudaEventQuery(event) == cudaErrorNotRead){

do_work_on_host ();

}

Figure 6: The results were that the added thread actually reduced our total execution time by the rate of an added
thread!
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5.2 Manual Load Balancing

We attempted to mitigate the difference in work between the GPU and CPU by testing if blocking the ”last batch”
to either the GPUs or the CPUs would either save processing from an additional GPU launch, or perhaps would
not allow the slower CPUs to touch the final bit of work that the GPU could process much quicker. Both attempts
yielded increased execution time while testing with our 3 Million alignment data set. It should be noted that our
work does not try to attempt to optimize either solution in particular but to demonstrate a work-stealing scenario
is feasible.

6 Additional Results

6.1 More CPUs? More GPUs?

Figure 7: Allocating more CPUs definitely scales, and would be worthwhile if you only have one GPU.

Figure 8: Adding another GPU just seems to scale linearly, see Figure 4 to compare. Again, the CPUs add what
they can, but barely make a dent in the total execution time, if not worse.
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6.2 Small and Large Data

Where the number of threads were chosen empirically as fastest.

Figure 9: CPU work stealing did not add much performance with the GPU being so much quicker.

Figure 10: There is a cliff at 45M Alignments per GPU. The CPUs seem to use the opportunity to steal more work.
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6.3 Real World Data

The real datasets were benchmarked using code that used host CPU stealing. These datasets were at a larger scale
than the toy reference set used for most other testing - the query and reference sequences used in each of the 3
external datsets were all about twice as long as that of the toy reference set.

Figure 11: Only a few experiments were better than the GPU only solution.

7 Future Work

For possible future work, a survey using different CPU Smith-Waterman SIMD libraries, such as SWIMM 2.0[6],
since our chosen implementation SSW[2] only utilizes SSE2 and our chip supports AVX-512[9] is of high interest. It
would be nice to see if larger vector widths would improve performance and help close the GPU gap. Using CPUs
such as the KNL processor we have been targeting all semester would be very interesting as it has so many physical
cores. Observing that even very old GPUs provide enormous performance boosts in relation to CPUs, a survey of
different combinations of CPU-GPU, especially with recycle-bin hardware, would be very timely and may help those
with less resource still have access to high throughput computing, during these times where demand outweighs the
supply of GPUs. A survey against cloud-computing would be interesting as well, we did poke at it a bit and offerings
with GPU Cloud solutions with ”vCPUs” seem to be especially problematic towards our experiments.

7.1 Short discussion on Heterogeneous Code

Supporting heterogeneous architectures is a complex problem. Ideally, one version of code can compile to multiple
targets, creating a maintainable solution that would require no new work for adding an additional CPU, device or
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accelerator. Much work has already been done towards this and one example would be OpenMP 4.5[8]. Unfortunately
for us, most solutions for Smith-Waterman are actually quite specialized towards specific architectures[3], which is
much the case for our example which utilizes SSE2 and CUDA. Additionally, different implementations of Smith-
Waterman may be further customized towards specific sequence types[3]. The codes we are implementing are actually
geared towards short sequences. We believe parallelism across devices may lend itself to hand-tuning and require a
great deal of work by an actual programmer especially when dealing with high performance solutions.

8 Concluding Remarks

The larger takeaway for us is that in a heterogeneous computing environment, while the GPUs are active, the CPUs
are available for and are capable of concurrent work at full capacity.

However, if the discrepancy between the GPU and CPU performance is too great, a worthwhile boost is unlikely.
Furthermore, as GPUs become faster and CPUs remain the same, this work-stealing scheme may be ineffective. The
code is not free and adds some amount of overhead, complexity, and energy use.

We have shown that on older GPUs there is much to be gained from work-stealing. Our recommendation is to
estimate ones gains before implementing.

We also only touch on processing throughput on a single problem. In the scope of a real application, different
concurrent work will be available for parallelism.
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10 Code Availability

https://github.com/CS267-ADEPT-WORKSTEALING/

References

[1] Awan, M.G., Deslippe, J., Buluc, A. et al. ADEPT: a domain independent sequence alignment strategy for gpu
architectures. BMC Bioinformatics 21, 406 (2020).
https://doi.org/10.1186/s12859-020-03720-1

[2] Zhao M, Lee W-P, Garrison EP, Marth GT (2013) SSW Library: An SIMD Smith-Waterman C/C++ Library
for Use in Genomic Applications. PLoS ONE 8(12): e82138.
https://doi.org/10.1371/journal.pone.0082138

[3] Barnes, Richard A Review of the Smith-Waterman GPU landscape
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-152.pdf

[4] CUDA Runtime API :: CUDA Toolkit Documentation https://docs.nvidia.com/cuda/cuda-runtime-api/

group__CUDART__EVENT.html
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